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Abstract— Security of cyber-physical systems (CPS) is a
challenge for increasingly integrated systems today. To analyze
and design detection and defense mechanisms for CPSs requires
new system frameworks. In this paper, we establish a zero-sum
hybrid stochastic game model, that can be used for designing
defense policies for cyber-physical systems against attackers
of different types. The hybrid game model contains physical
states described by the system dynamics, and a cyber state that
represents the detection mode of the system. A system selects a
subsystem by combining one controller, one estimator and one
detector among a finite set of candidate components at each
state. In order to provide scalable and real-time computation of
the switching strategies, we propose a moving-horizon approach
to solve the zero-sum hybrid stochastic game, and obtain
a saddle-point equilibrium policy for balancing the system’s
security overhead and control cost. This approach leads to a
real-time algorithm that yields a sequence of Nash equilibrium
strategies which can be shown to converge. The paper illustrates
these concepts using numerical examples, and we compare the
results with previously known designs.

I. INTRODUCTION

Cyber Physical Systems (CPS) feature a tight integration
of embedded computation, networks, and controlled physical
processes [1]. The interaction among continuous physical
dynamics, discrete communications, and computation sub-
strates have made CPS vulnerable to malicious attacks be-
yond the standard cyber attacks [2]. Recoded attacks on CPS
have brought into attention the challenges and requirements
for secure CPS [1], [2], [3]. One famous incident, attack on
Maroochy Water control system and the response discussed
in [4], shows that CPS attacks can disrupt critical infrastruc-
tures and lead to undesirable, catastrophic consequences.

Xu et al. compare four different jamming attack mod-
els and detection schemes for consistency checking [5].
Syverson presents a taxonomy of replay attacks–independent
of any analysis or preventing methods–on cryptographic
protocols in [6]. In general, people use attack models as
parameters to design defense schemes. However, a specific
detection approach is not sufficient, when system is suscepti-
ble to various types of attacks and does not know which one
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will happen. Consequently, strategic methods that balance the
system performance and security requirements are necessary,
considering control and defense costs with the effects of
multiple attacks.

The application of game theory to security problems has
raised a lot of interest in recent years. Manshaei et al. sum-
marize selected works that apply game-theoretic approaches
in computer networks security and privacy problems [7].
Zhu et al. present a noncooperative stochastic game scheme
of Intrusion Detection System (IDS) in [8]. A minimax game
formulation in the presence of faults is discussed in [9].
Miao et al. design a zero-sum stochastic game approach for
replay attack detection [10]. The game model parameters are
quantified with the knowledge of system dynamics, and a
suboptimal value iterative algorithm for finite-horizon non-
stationary stochastic game is developed.

Building a scalable and computationally friendly frame-
work is pivotal for security analysis and design of CPS.
To achieve this goal, our first step is to establish a zero-
sum hybrid stochastic game model to capture the hybrid
system dynamics and interactions with attacks. The hybrid
game model contains a dynamic system model that captures
the evolution of the physical processes, and discrete cyber
modes that represent different security states of the CPS.
We propose a computation methodology, that uses a moving
window to select a sequence of physical state information,
and computes a stationary saddle-point equilibrium strategy
with the state being a joint cyber and physical state. This
novel algorithm reduces the computational complexity of
finding equilibrium solutions for the hybrid stochastic game,
and yields an online algorithm for real-time CPS.

When the sequence of game strategies converges, the state
transition probability of the game converges, and we leverage
the stability analysis of Markov jump systems [11] to check
system stability. The cost comparison with the suboptimal
algorithm [10] shows that the real-time algorithm does not
sacrifice system performance much.

The contributions of this work are summarized as follows:
1) We formulate a zero-sum hybrid stochastic game

framework for designing a switching policy for a
system under attacks.

2) We develop a real-time algorithm to reduce the com-
putation overhead of the hybrid stochastic games, and
analyze the convergence condition of the algorithm.

This paper is organized as follows. In Section II, we
describe the system and attack models. In Section III, we
formulate and quantify a zero-sum, hybrid stochastic game
between the system and the attacker. The moving horizon



algorithm is shown, followed by an analysis of the algo-
rithm convergence and system stability characteristics in Sec-
tion IV. On several examples, in Section V we illustrate the
computation speed and system performance of the derived
algorithm. Finally, Section VI provides concluding remarks.

II. SWITCHED SYSTEM AND ATTACK MODEL

We consider the CPS security problem when both the
system and attacker have limited knowledge about the op-
ponent. The system is equipped with multiple controller-
s/estimators/detectors, such that each combination of these
components constitute a subsystem. A subsystem has a
probability to detect specific types of attacks with different
control and detection costs.To balance the security overhead
and the control cost under various attacks, we consider
switching among subsystems (choose a model for every
component) according to the system dynamics and detector
information. A switched system model is shown in Figure 1.
We describe the model of each component in Figure 1 with a
concrete example. The set of subsystems is not restricted to
the models in the rest of this section, and the system model
can be further generalized.

LTI Plant:: Consider a class of LTI plants described by:

xk+1 = Axk + Buk + wk,yk = Cxk + vk, (1)

where xk ∈ Rn,uk ∈ Rp and yk ∈ Rm denote the discrete
time state, input and output vectors respectively, and wk ∼
N (0,Q), vk ∼ N (0,R) are independent and identically
distributed (IID) Gaussian random noise. The initial state is
x0 ∼ N (x̄0,Σ).

Estimators: Kalman filter is widely applied for noisy
systems. We assume that (A,B) is stabilizable, (A,C) is
detectable, then a steady state Kalman filter exists:

x̂0|−1 = x̄0,P0|−1 = Σ,Pk+1|k = APkA
T + Q,

P = lim
k→∞

Pk|k−1,K = PCT (CPCT + R)−1,

x̂k|k = x̂k|k−1 + K(yk −Cx̂k|k−1),

x̂k+1|k = Ax̂k|k + Buk.

(2)

Controllers: A state feedback control law is described as
uk = L(x̂k|k), where L(·) is a linear function. For example,
an optimal LQG controller is described as uk = Lx̂k|k,
where L is a time invariant matrix.
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Fig. 1: Switching system diagram, where the system is
equipped with N1 controllers, N2 estimators and N3 de-
tectors and switches among N subsystems. An example
subsystem (controller N1, estimator N2, and detector N3)
is chosen in this figure.

Detectors: The detector design is related to the state
estimator in general. For the steady state Kalman filter (2),
the residues zi = yi − Cx̂i|i−1 satisfying IID Gaussian
N (0,P), where P = CPCT + R. Define the following

gk =
k∑

i=k−τ+1

(yi −Cx̂i|i−1)TP−1(yi −Cx̂i|i−1),

and gk satisfies χ2 distribution. A χ2 square detector triggers
the alarm when gk ≥ α. We assume that the detection
window size τ and the threshold α are provided as system
model according to an expected false alarm trigger rate.

Cyber state – discrete modes of the system: We denote
the modes of a vulnerable system as three constants S =
{δ1, δ2, δ3}. State δ1 = safe describes that the system has
already successfully detected an attack; δ2 = no detection
specifies that the alarm is not triggered; finally, the system
enters the state δ3 = false alarm trigger when the alarm
is triggered while no attack has yet occurred. The mode
depends on the detector, and is a probability information.
We assume that once the alarm is triggered, the system will
stop the execution and check whether some attack occurred
or it is a false alarm trigger; when the system is hijacked,
the estimator, detector and controller are fed with false data,
until an alarm is triggered and the system reacts to the attack.

Attack model: We assume that the controller/estima-
tor/detector are secured, and attackers can not hack code
implemented in these components. Sensors and actuators are
vulnerable, and attacker can change values sent from sensors
or received by actuators – yk,uk of system (1) are defined
as y′k,u

′
k, according to the types of attacks we consider.

For example, data injection attacks change the vectors as:
y′k = yk + yak,u

′
k = uk + uak; replay attacks change sensor

values as y′k = yk−T2 , where T2 is the replay window size.

III. A HYBRID STOCHASTIC GAME MODEL

To obtain a switching policy that minimizes the expected
real-time worst case payoff for the given subsystems, we
formulate a zero-sum, hybrid stochastic game between the
system and the attacker. System dynamics knowledge are
combined with the game definition, and the quantitative
process for the game parameters will be introduced in this
section. We assume that one game stage k is also one time
step of the physical system. The total stage number is K. The
joint game state space (X[k−T,k] × S) contains information
about both the system dynamics xk and the discrete modes
δl, l = 1, 2, 3. With this game state definition, the state tran-
sition between stage k and k+ 1 is Markov – the joint state
includes information we need to compute the game strategy
at the current stage. At each stage k ∈ {T, · · · ,K + T},
other game parameters include action space for the attacker
(system) Atk (Ask), the state transition probability matrix
Pk, and the immediate payoff matrix rk. The solution set of
the game are mixed strategies Fk for the attacker, and Gk

for the system. Formally, the game is defined as a sequence
of tuples: {(X[k−T,k] × S), Atk, Ask,Fk,Gk,Pk, rk}.

Game State Space: The joint state of the system at
stage k is described by the pair skl = (x[k−T,k], δl), where



x[k−T,k] = (xk−T , xk−T+1, · · · , xk) ∈ X[k−T,k] is the
discrete time dynamics of the physical process provided to
the system–the state estimations x̂k−T , · · · , x̂k, δl ∈ S =
{δ1, δ2, δ3} denote the cyber state of the system. We assume
that once the game reach δ1, the system wins and will not
enter other modes till next game, i.e., δ1 is an absorbing
state. The moving-horizon transition of the joint states on
stage axis is shown as Figure 2. Here T is the window size
of system dynamics that we need to quantify the parameters
at game stage k. For example, if the χ2 detector’s detection
window size is T1, considering sensor data injection attacks
and replay attacks with replay windows less than T2 steps,
then T = max{T1, T2}.

Attacker’s Action Space: For definition simplicity,
we consider sensor attacks y′k ∈ Atk, where Atk =
{a1k, a2k, · · · , aMk} is the attacker’s action space at stage k,
and a1k means no attack. The actions can be either multiple
types, or the same type attack with different values. 1

System’s Action Space: Ask = {u1k, u2k, · · · , uNk} is
the system’s action space at stage k, where ujk is the index
for the jth subsystem. We assume that the N subsystems (a
model for each component in Figure 1) are pre-determined.
For example, a subsystem can be the plant with a given
optimal LQG controller, a Kalman filter and a χ2 detector.

Mixed Strategy: Let f ik(skl) (gjk(skl)) be the probability
that the attacker (system) chooses action aik ∈ Atk (ujk ∈
Ask) at state skl ∈ (X[k−T,k] × S). Define Fk and Gk as
the strategy sets of the attacker and the system for stage k:

Fk := {fk = [fk(sk1), fk(sk2), fk(sk3)]|f ik(skl) ≥ 0,∑
aik∈Atk

f ik(skl) = 1, fk(skl) ∈ RM ,∀skl ∈ (X[k−T,k] × S)},

Gk := {gk = [gk(sk1),gk(sk2),gk(sk3)]|gjk(skl) ≥ 0,∑
ujk∈Ask

gjk(skl) = 1,gk(skl) ∈ RN ,∀skl ∈ (X[k−T,k] × S)}.

Note that x[k−T,k] provides exogenous information for the
strategy fk(gk), since for every l, fk(skl)(gk(skl)) is the
strategy at mode δl for the same x[k−T,k] at stage k.

1To find system’s strategy based on the game formulation, it is required
that attacker’s action space is defined. If the attacker’s actual behavior is
outside of the action space we consider, then a switched system does not
ensure performance under the attack outside the action space.
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Fig. 2: Joint state transition of the hybrid stochastic game
when moving the horizon of game state one step ahead.
When the state transits from stage k to k+1, we slice the win-
dow of the sequence of physical dynamics one step ahead,
add xk+1 and remove xk−T , thus x[k−T,k] → x[k−T+1,k+1].
The piecewise constant modes δl, δh describe the cyber states
provided by the detector at stage k respectively.

System Dynamic under game framework: Given the
subsystem and attack models in Section II and the game
definition, we show the dynamics at stage k given an action
pair (aik, ujk) (assume initial x̂1|0 = x̄0, x1 = x0).

A subsystem: Each action pair (aik, ujk) defines the
corresponding system dynamics at k. For example, when we
focus on sensor attacks (like replay or false data injection),
let γk(aik, ujk) be the control input with (aik, ujk), a sub-
system ujk with a Kalman filter, an optimal LQG controller,
and a χ2 detector, has the following dynamics:

xk = Axk−1 + Buk−1 + wk−1,

yk =

{
a1k = Cxk + vk, without attack
aik, i = 2, · · · ,M, with attack

x̂k|k−1 = Ax̂k−1|k−1 + Buk−1,

x̂k|k(aik) = x̂k|k−1 + K(aik −Cx̂k|k−1),

x̂k+1|k(aik, ujk) = Ax̂k|k(aik) + Bγk(aik, ujk),

γk(aik, ujk) = Lx̂k|k(aik),

zk+1(aik, ujk) = aik −Cx̂k+1|k(aik, ujk).

(3)

Consequently, the sum of residues gk+1 and the probability
of triggering an alarm by the χ2 detector at k + 1 are:

gk+1(aik, ujk) =

k∑
t=k−τ+1

[zt]
TP−1zt

+ [zk+1(aik, ujk)]TP−1zk+1(aik, ujk),

P (gk+1(aik, ujk)) ≥ α.

(4)

State Transition Probability: Given a set of subsystem
models, define the state transition probability as (X[k−T,k]×
S)×Atk ×Ask → P (X[k−T+1,k+1] × S), where

P̃k(s(k+1)h|skl) = [P̃ ijk (s(k+1)h|skl) ≥ 0] ∈ RM×2,
s(k+1)h ∈ (X[k−T+1,k+1] × S), skl ∈ (X[k−T,k] × S),∑
s(k+1)h∈(Xk+1×S)

P̃ ijk (s(k+1)h|skl) = 1,

∀(aik, ujk) ∈ Atk ×Ask, skl ∈ (X[k−T,k] × S).

P̃ ijk (s(k+1)h|skl) is the probability that system transit from
state skl to state s(k+1)h at stage k + 1, given both players’
action (aik, ujk) at stage k. The transition probability is pro-
vided by intrusion detectors of the subsystem. For example,
if a χ2 detector is the detector component of subsystem ujk,
we apply (4) to decide the state transition probability.

Immediate Payoff Function: The immediate payoff ma-
trix at stage k is a RM×N matrix for given game state
and every action pair (aik, ujk). Define rk : (X[k−T,k] ×
S) × Atk × Ask → R, where r̃k(skl) = [r̃ijk (skl) ≥ 0]. Let
γk(aik, ujk) be the control input given action pair (aik, ujk).
For example, considering expected linear quadratic cost

r̃ijk (skl) =r̃ijtk(skl) = −r̃ijsk(skl), and define:

r̃ijk (sk1) =Ex̂TkWEx̂k + EγTk (a1k, ujk)UEγk(a1k, ujk),

r̃ijk (sk2) =Ex̂TkWEx̂k + EγTk (aik, ujk)UEγk(aik, ujk),

r̃ijk (sk3) =pf ,
(5)



where pf is the false alarm trigger penalty; xk is the LTI
plant state under the game framework. At mode δ1 system
wins, so the payoff is a normal system payoff with correct
sensor data. The penalty pf is the cost that the system needs
to stop execution, check the reason of an alarm, and restart
later. The larger pf is, the less probable it is for the system
to choose a strategy to transit to state sk3.

Expected Model Update With Strategy at Stage k: Let
p(skl) be the probability system is at state skl at stage k (
p(s1l) is given). With a strategy fk,gk, the attacker and the
system randomly sample an action pair (aik, ujk) according
to the probability distribution. Then, the control input and
sensor value for calculating expectation cost are:

uk =

N∑
j=1

M∑
i=1

3∑
l=1

p(skl)f
i
k(skl)g

j
k(skl)γk(aik, ujk),

yk =

M∑
i=1

3∑
l=1

p(skl)f
i
k(skl)aik.

The probability that system is at state s(k+1)h for k + 1 is:

p(s(k+1)h) =

3∑
l=1

p(skl)[fk(skl)]
T P̃k(s(k+1)h|skl)gk(skl).

IV. A MOVING-HORIZON APPROACH FOR HYBRID
STOCHASTIC GAME

In this section, we propose a moving-horizon algorithm to
compute the saddle-point equilibrium strategy of the hybrid
stochastic game. Illustrated in Fig. 2, a time window of
size T is used, and an equilibrium strategy is computed at
each stage k by looking back T stages of the physical state
x[k−T,k] and its associated cyber state δl. Detailed process
of moving the horizon to obtain predicted future stage
information is described in Subsection A. Algorithm 1 is
developed based on this concept, and provides a scalable and
real-time computation process, which allows us to analyze
the convergence property of the strategies of the hybrid
stochastic game in Subsection B.

A. A Moving-Horizon Algorithm for Game Strategies

The saddle-point equilibrium strategy and the value of
the moving-horizon game at each stage involves solving
finite zero-sum matrix games. In this paper, we consider an
objective function that reflects the payoff of the game at
the current stage k, and also the expected payoff from the
future stage. By looking one stage ahead of the game state at
k, predicting the physical dynamics xk+1 given any action
pair, we move the information horizon to stage k + 1 and
obtain future expectation for computing the strategies at stage
k. The moving horizon process is illustrated as Figure 2.
Detailed process to construct the payoff matrix of a zero-
sum game for stage k is described, and Algorithm 1 presents
the complete equilibrium computation process of the hybrid
stochastic game.

Given any action pair (aik, ujk) at stage k, we first
update the state space form of the system dynamics xk+1

based on x[k−T,k] as (3). We view xk+1 as a func-
tion of (x[k−T,k], aik, ujk), the immediate payoff function
r̃k+1(s(k+1)h) (for stage k + 1) defined as (5) is a function
of s(k+1)h = (x[k−T+1,k+1], δh), thus rk+1 is a function
of (x[k−T,k], aik, ujk, δh), as shown in the following equa-
tion (6). Then, we compute the value of the matrix game
at stage k + 1, for every rk+1(x[k−T,k], aik, ujk, δh), h =
1, 2, 3, i ∈ {1, · · · ,M}, j ∈ {1, · · · , N} as (6):

vijk+1(x[x−T,k], δh) = min
g

max
f

(rk+1(x[k−T,k], aik, ujk, δh))

(6)
With the predicted value from the next stage, define the

auxiliary matrix for stage k as:

Qk(skl) = rk(skl) +
∑
sh∈S

P̃k(s(k+1)h|skl) · vk+1(x[k−T,k], δh),

(7)

where the matrix vijk+1(x[x−T,k], δh) is defined by (6), and it
is the element of the ith row, jth column of the matrix

vk+1(x[k−T,k], δh) ∈ RM×N .

The dot products between two matrices P̃k(s(k+1)h|skl),
vk+1(x[k−T,k], δh) is an element wise product of two ele-
ments at the same position of the two matrices.

The value and stationary equilibrium strategies that Algo-
rithm 1 calculates at each stage k is defined as following:

Definition 1: Given skl, vk+1(x[k−T,k], δh) as (6), and
auxiliary matrix Qk(skl) as (7), the value and equilibrium
strategies at k are defined as the following equation:

v(skl) = min
gk(skl)

max
fk(skl)

fk(skl)
TQk(skl)gk(skl). (8)

Where we treat the auxiliary matrix Qk(skl) as the payoff
matrix of a zero-sum game of stage k.

At each stage k, we repeat calculating Qk(skl) and the
corresponding value and equilibrium strategies, then update
the system dynamics by the strategies for computation of
next stage. The complete process is summarized as Algo-
rithm 1. To get the total payoff till stage k by Algorithm 1,
we plug in the strategies f ,g to the system dynamics and
calculate the sum of payoff for all stages.

Remark 1: It is worth noting that Algorithm 1 reduces the
computation overhead for the hybrid stochastic game, since
it looks one stage ahead with a moving-horizon information
window. The complexity of Algorithm (1) is O(K). For a
large total stage number of the hybrid stochastic game T̃ , it
is necessary to examine the strategy trend of Algorithm 1,
such as convergence property. As a contrast, the suboptimal
algorithm in [10] takes the total expected payoff as an
objective function. The complexity of suboptimal algorithm
is exponential with stage number K, because the algorithm
looks K stages ahead at once and compute a robust game
for every iteration. The advantage of suboptimal algorithm
in [10] is to provide an upper bound of the total finite cost.
However, for a large T̃ , the suboptimal algorithm in [10]
is computationally expensive. Numerical comparisons are
shown in Section V.



Algorithm 1 : Moving-Horizon Algorithm for A Hybrid
Stochastic Game
Input: System model parameters and game parameters.
Initialization: x̂1|0,x1.
Iteration: For k = T, · · · ,K + T − 1, skl = (x[k−T,k], δl),
l = 1, 2, 3: get the auxiliary matrix (7) for stage k; compute
the value and equilibrium strategies of every matrix game:
v(skl) = min

g(skl)
max
f(skl)

f(skl)
TQk(skl)g(skl),

f∗k (skl) = arg max
fk(skl)

fk(skl)
TQk(skl)g

∗
k(skl),

g∗k(skl) = arg min
gk(skl)

[f∗k (skl)]
TQk(skl)gk(skl).

Update the system dynamics with strategies f∗k (skl),g
∗
k(skl),

l = 1, 2, 3 as described in 3 for the next stage.
Return: the concatenation of strategies for both players
f = {f∗k (skl)},g = {g∗k(skl)} and the value sequence
vk(skl), k = 1, · · · ,K, l = 1, 2, 3.

B. Convergence Analysis of the Algorithm

Given the sets of models for each component of the
subsystems and attacks, the system dynamics are defined by
a sequence of action pairs (aik, ujk), k ∈ {k+T, · · · ,K+T}
randomly chosen by the attacker and the system. Then, the
system dynamics with the stochastic game strategies (for
the system and the attacker) are equivalent with a switched
system – the system model randomly switches among N
subsystems, according to strategies fk(skl). The following
theorem shows the existence condition of convergent strate-
gies when k → ∞. When there exists such strategies, the
switched system can be described as a Markov jump system,
since the state transition probability also converges.

Proposition 1: The strategy sequences f∗k (skl), g∗k(skl) of
the stochastic game converge to fl, gl, l = 1, 2, 3, i.e.,

fl = lim
k→∞

f∗k (skl), g
l = lim

k→∞
g∗k(skl), l = 1, 2, 3,

if updating system dynamics at stage k+ 1 by (fl, gl) results
in:

lim
k→∞

Qk(skl) = lim
k→∞

Qk(s(k+1)l), l = 1, 2, 3. (9)

Proof: According to Algorithm 1, the strategies f∗k (skl),
g∗k(skl), l = 1, 2, 3 are the saddle-point equilibrium strategies
for the payoff matrices Qk(skl), l = 1, 2, 3. Thus, if (9)
holds, the auxiliary matrix Qk(skl) converges, and we get
convergent strategies for both players.

Remark 2: When the strategy sequences of both play-
ers converge, the switched system dynamics converge to
a discrete-time Markov jump linear system (with delays
when the attacker’s strategies include replay attacks), then
we analyze the stability properties of the system based on
conclusions of previous work [11].

It is possible that some subsystems ujk, j ∈ {1, · · · , N}
are unstable under specific types of attacks. When this is the
case, the system switches among stable and unstable subsys-
tems. Stability properties of continuous time linear switched
systems including unstable modes are analyzed in [12]. To
guarantee exponential stability, the total activation time of

K real time algorithm suboptimal algorithm
20 1.8054s 6.7346s
50 4.9968s 58.6144s

100 8.3827s 2073.2928s
500 41.0342s 20h

TABLE I: Elapsed time comparison of two algorithms

unstable subsystems need to be relatively small compared
with that of stable subsystems. Given the stochastic game
strategy, we get the switched dynamic process of the system
under different types of attacks, and check whether stability
conditions are violated. More analysis of system stability
conditions based on the moving horizon stochastic game
framework will be an avenue of future work.

V. COMPARISON OF ALGORITHMS

One advantage of the moving horizon Algorithm 1 is its
faster computation speed. Table I shows Matlab simulation
time for different K-stage games, all with a (4 × 2) action
space (i.e., the attacker has 4 actions and the system has 2 ac-
tions). When K increases, the difference between algorithm
speed also increases.

Using a linear system with control-cost optimal (but
nonsecure) and secure (but cost-suboptimal) controllers in
presence of replay attacks as an example, we compare the
cost of the strategies provided by the suboptimal algorithm
in [10] and Algorithm 1. The example studied is an unstable
batch reactor [13], which is a four dimensional system. The
linearized model parameters are:

A =


1.38 −0.2077 6.715 −5.676
−0.5814 −4.29 0 0.675

1.067 4.273 −6.654 5.893
0.048 4.273 1.343 −2.104

 ,

B =


0 0

5.679 0
1.136 −3.14
1.136 0

 ,C =

[
1 0 1 −1
0 1 0 0

]
,D = 0

With the system parameters, we compute two controllers:
Controller 1 is the optimal LQG controller u∗K ; controller 2
is u∗k + ∆uk, a non-optimal controller with higher replay
detection rate as designed by [14]. The system has one
steady state Kalman filter, and the corresponding χ2 detector.
Assume that there are two subsystems: subsystem u1k is
with controller 1, and subsystem u2k is with controller 2.
The replay attack window sizes (attacker’s action space) are
{10s, 20s, 30s, 40s} and we design switched control policy
for the system. We assume that the initial system mode is
δ2, (i.e., p(δ12) = 1), the total stage number K = 50.

Figure 3 shows the probability of switching to Controller 2
at every stage according to different algorithms. Three cases
are shown in Figure 4–when the system applies the strategy
of Algorithm 1 in this work, the suboptimal algorithm
strategy and only the cost non-optimal controller through
all stages. Figures 5 shows the probability that system
being at mode δ1 (successfully detected an attack), when
applying strategies obtained from the two algorithms and



only applying the controller providing a higher detection
rate for replay attack. Applying a game strategy, randomly
switching between subsystems results in a lower cost, while
does not sacrifice the detection rate much. The suboptimal
algorithm performs better with respect to cost saving.

Game strategies still provide system performance improve-
ment compared with a non-game approach, even only the
attack type is included in the attacker’s action space of the
game framework but not the exact behavior of the attacker.
For example, consider a replay attack T2 = 25s, and the
game strategy calculated with action space {10, 20, 30, 40}.
Since 25 is in the range of [20, 30], the payoff and state
transition probability are approximated by the parameters
when T2 is 20, 30.
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Fig. 3: Strategies comparison of two algorithms for system
under replay attack–the probability of switching to subsystem
2 at mode δ2 of every k.
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System always applies controller 2
System applies suboptimal strategy
System applies real time strategy of
algorithm 1

Fig. 4: Cost comparison of system applying different strate-
gies at mode δ2. Applying the suboptimal strategy provides
the smallest cost, and the strategy of the real time algorithm
is better than the one of a non-game approach.
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Fig. 5: Comparison of the probability of the system being
at mode δ1 for different strategies. Game strategies provide
similar detection rate with the non-switching policy.

VI. CONCLUSION

In this work, we have proposed a zero-sum hybrid stochas-
tic game model to capture the interactions between a cyber-
physical system and an attacker – switching policy for the
system under different types of active attacks. To reduce
the computational complexity, a real-time algorithm is devel-
oped based on the concept of moving-horizon computation
of saddle-point equilibrium for the hybrid stochastic game
framework. At each step, we look ahead one stage, with
information of a window of physical dynamics and cyber
modes, to compute an equilibrium policy. In the future, we
plan to analyze stability conditions of the system based on
the stochastic game framework.
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