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Extensive empirical studies presented in this article confirm that the quality of radio communication between
low-power sensor devices varies significantly with time and environment. This phenomenon indicates that
the previous topology control solutions, which use static transmission power, transmission range, and link
quality, might not be effective in the physical world. To address this issue, online transmission power control
that adapts to external changes is necessary. This article presents ATPC, a lightweight algorithm for Adaptive
Transmission Power Control in wireless sensor networks. In ATPC, each node builds a model for each of
its neighbors, describing the correlation between transmission power and link quality. With this model,
we employ a feedback-based transmission power control algorithm to dynamically maintain individual link
quality over time. The intellectual contribution of this work lies in a novel pairwise transmission power
control, which is significantly different from existing node-level or network-level power control methods.
Also different from most existing simulation work, the ATPC design is guided by extensive field experiments
of link quality dynamics at various locations over a long period of time. The results from the real-world
experiments demonstrate that (1) with pairwise adjustment, ATPC achieves more energy savings with a
finer tuning capability, and (2) with online control, ATPC is robust even with environmental changes over
time.
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1. INTRODUCTION

With the integration of sensing and communication abilities in tiny devices, wireless
sensor networks are widely deployed in a variety of environments, supporting mili-
tary surveillance [Arora et al. 2004; Liu et al. 2003], emergency response [Xu et al.
2004; Liu et al. 2010], medical care [Stankovic et al. 2005; Asare et al. 2012], and
scientific exploration [Tolle et al. 2005]. The in situ impact from these environments,
together with energy constraints of the nodes, makes reliable and efficient wireless
communication a challenging task. Under a constrained energy supply, reliability and
efficiency are often at odds with each other. Reliability can be improved by transmit-
ting packets at the maximum transmission power [He et al. 2004; Werner-Allen et al.
2006], but this situation introduces unnecessarily high energy consumption. To pro-
vide system designers with the ability to dynamically control the transmission power,
popularly used radio hardware such as CC1000 [ChipconCC1000 2005] and CC2420
[ChipconCC2420 2005] offers a register to specify the transmission power level during
runtime. It is desirable to specify the minimum transmission power level that achieves
the required communication reliability for the sake of saving power and increasing the
system lifetime.

Although theoretical study and simulation provide a valuable and solid foundation,
solutions found by such efforts may not be effective in real running systems. Sim-
plified assumptions can be found in these studies, for example, static transmission
power, static transmission range, and static link quality. These studies do not consider
the spatial-temporal impact on wireless communication. In this article, we present
systematic studies on these impacts. There are a number of empirical studies on com-
munication reality conducted with real sensor devices [Zhao and Govindan 2003; Woo
et al. 2003; Zhou et al. 2004; Cerpa et al. 2005; Reijers et al. 2004; Lal et al. 2003]. Their
results suggest that for a specified transmission power and communication distance,
the received signal power varies and the link quality is unstable. But they do not focus
on a systematic study of the radio and link dynamics in the context of different trans-
mission power settings. Our extensive experiments with MICAz [CROSSBOW 2004]
confirm the observations presented in previous work. We also go further and explore
the radio and link dynamics when different transmission power levels are applied.
Our experimental results identify that link quality changes differently according to
spatial-temporal factors in a real sensor network. To address this issue, we design a
pairwise transmission power control. Our empirical study also reveals that it is feasible
to choose a minimal and environment-adapting transmission power level to save power
while guaranteeing specified link quality at the same time.

To achieve the optimal power consumption for specified link qualities, we propose
ATPC, an adaptive transmission power control algorithm for wireless sensor networks.
The result of applying ATPC is that every node knows the proper transmission power
level to use for each of its neighbors, and every node maintains good link qualities with
its neighbors by dynamically adjusting the transmission power through on-demand
feedback packets. Uniquely, ATPC adopts a feedback-based and pairwise transmission
power control. By collecting the link quality history, ATPC builds a model for each
neighbor of the node. This model represents an in situ correlation between transmission
power levels and link qualities. With such a model, ATPC tunes the transmission
power according to monitored link quality changes. The changes of transmission power
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level reflect changes in the surrounding environment. ATPC supports packet-level
transmission power control at runtime for MAC and upper layer protocols. For example,
routing protocols with transmission power as a metric [Singh et al. 1998; Subbarao
1999; Gomez et al. 2003; Ganesan et al. 2001; Chipara et al. 2006] can make use of
ATPC by choosing the route with optimal power consumption to forward packets.

The topic of transmission power control is not new, but our approach is quite unique.
In state-of-the-art research, many transmission power control solutions use a single
transmission power for the whole network, not making full use of the configurable
transmission power provided by radio hardware to reduce energy consumption. We re-
fer to this group as network-level solutions, and typical examples in this group are Park
and Sivakumar [2002b], Narayanaswamy et al. [2002], Bettstetter [2002], Kirousis
et al. [2000], and Santi and Blough [2003]. Also, some other work takes the configurable
transmission powers into consideration. They assume either that each node chooses a
single transmission power for all the neighbors [Bettstetter 2002; Kirousis et al. 2000;
Kubisch et al. 2003; Ramanathan and R-Hain 2000; Wattenhofer et al. 2001; Kawadia
et al. 2001; Park and Sivakumar 2002a; Rodoplu and Meng 1999; Li et al. 2002], which
we refer to as node-level solutions, or that nodes use different transmission powers for
different neighbors [Liu and Li 2002; Xue and Kumar 2004; Blough et al. 2003], which
we call neighbor-level solutions. While these solutions provide a solid foundation for
our research, ATPC goes further to support packet-level transmission power control in
a pairwise manner.

Also, most existing real wireless sensor network systems use a network-level trans-
mission power for each node, such as in He et al. [2004] and Werner-Allen et al. [2006].
These coarse-level power controls lead to high energy consumption. The authors of Son
et al. [2004] present a valuable study about the impact of variable transmission power
on link quality. Through our empirical experiments with the MICAz platform, it is ob-
served that different transmission powers are needed to achieve the same link quality
over time. This leads to our feedback-based transmission power control design, which is
not addressed in Son et al. [2004]. Also, Son et al. [2004] use a fixed number of transmis-
sion powers (13 levels), which fixes the maximum accuracy for power tuning. The ATPC
we propose chooses different transmission power levels based on the dynamics of link
quality, and it also allows for better tuning accuracy and more energy savings. Our ap-
proach essentially represents a good tradeoff between accuracy and cost, a finer control
at each node in exchange for less energy consumption when transmitting the packets.

In this work, we invest a fair amount of effort to obtain empirical results from three
different sites and over a reasonably long time period. These results give practical guid-
ance to the overarching design of ATPC. We demonstrate that ATPC greatly extends
the system lifetime by choosing a proper transmission power for each packet transmis-
sion, without jeopardizing the quality of data delivery. In our 3-day experiment with
43 MICAz motes, ATPC achieves above a 98% end-to-end Packet Reception Ratio in
the natural environment through fair and rainy days. The solutions without online
tuning can barely deliver half of packets. Compared to other solutions, ATPC also
significantly saves transmission power. With equivalent communication performance,
ATPC only consumes 53.6% of the transmission energy of the maximum transmission
power solution and 78.8% of the transmission energy of the network-level transmission
power solution. More specifically, the contributions of our work lie in two aspects:

—Our systematic study and experiments reveal the spatiotemporal impacts on wireless
communication and identify the relationship between the dynamics of link quality
and transmission power control.

—With runtime pairwise transmission power control, we achieve a high packet delivery
ratio successfully with small energy consumption under realistic scenarios.
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The rest of this article is organized as follows: the motivation of this work is presented
in Section 2. In Section 3, the design of ATPC is stated. In Section 4, ATPC is evaluated
in real-world experiments. The state of the art is analyzed in Section 5. In Section 6,
conclusions are given and future work is pointed out.

2. MOTIVATION

Radio communication quality between low-power sensor devices is affected by spatial
and temporal factors. The spatial factors include the surrounding environment, such
as terrain, and the distance between the transmitter and the receiver. Temporal factors
include surrounding environmental changes in general, such as weather conditions. In
this section, we present experimental results for investigation of these impacts. We
note that previous empirical studies on communication reality [Zhao and Govindan
2003; Cerpa et al. 2005; Zhou et al. 2004; Ganesan et al. 2002; Reijers et al. 2004;
Lal et al. 2003] suggest that for a specified transmission power, fixed communication
distance, and antenna direction, the received signal power and the link quality vary.
But they do not focus on a systematic study of the radio and link dynamics when dif-
ferent transmission powers are considered. We conducted these measurements, and
we are the first to study systematically the spatial and temporal impacts on the cor-
relation between transmission power and Received Signal Strength Indicator (RSSI)/
Link Quality Indicator (LQI) [IEEE 802.15.4 1999]. Both RSSI and LQI are useful
link metrics provided by CC2420 [ChipconCC2420 2005]. RSSI is a measurement of
signal power that is averaged over eight symbol periods of each incoming packet. LQI
is a measurement of the “chip error rate” [ChipconCC2420 2005], which is also imple-
mented based on samples of the error rate for the first eight symbols of each incoming
packet. The transmission power level index refers to the value specified for the RF
output power provided by CC2420 [ChipconCC2420 2005]. It can be mapped to output
power in units of dBm.

Our empirical results show that link quality is significantly influenced by spatiotem-
poral factors, and that every link is influenced to a different degree in a real system.
This observation proves that the assumptions made from previous work about the
static impact of the environment on link quality do not hold. Solutions based on these
simplifying assumptions may not accurately capture the dynamics of communication
quality, and may result in highly unstable communication performance in real wire-
less sensor networks. Therefore, the in situ transmission power control is essential for
maintaining good link quality in reality.

2.1. Investigation of Spatial Impact

To investigate the spatial impact, we study the correlation between transmission power
and link qualities in three different environments: a parking lot, a grass field, and a
corridor, as shown in Figure 1. We use one MICAz as the transmitter and a second
MICAz as the receiver. They are put on the ground at different locations, maintaining
the same antenna direction. The transmitter sends out 100 packets (20 packets per
second) at each transmission power level. The receiver records the average RSSI, the
average LQI, and the number of packets received at each transmission power level. The
experiments are repeated with five different pairs of motes in the same environmental
conditions to obtain statistical confidence.

Figure 2 shows our experimental data obtained from one pair of nodes in differ-
ent environments. Each curve demonstrates the correlation between the transmission
power and RSSI/LQI at a certain distance of that pair. The confidence intervals (97%)
of RSSI/LQI are also plotted on Figure 2. Clearly, there is a strong correlation between
transmission power level and RSSI/LQI. We note that there is an approximately linear
correlation between transmission power and RSSI in Figures 2(a), 2(c), and 2(e). The
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Fig. 1. Experimental sites.

Fig. 2. Transmission power versus RSSI/LQI at different distances in different environments.

LQI curves in Figures 2(b), 2(d), and 2(f) also present approximately linear correlations
when the LQI readings are small. However, the LQI readings suffer saturation when
they get close to 110, which is the maximum quality frame detectable by the CC2420
[ChipconCC2420 2005]. We also notice that each LQI curve and its corresponding RSSI
curve demonstrate similar trends and variations. This is because the LQI reading is
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also a representation of the SNR value, which is the ratio of the received signal power
level to the background noise level.

The slopes of RSSI curves generally decrease as the distance increases, but this
is not always true. According to Shankar [2001], RSSI is inversely proportional to
the square of the distance. To obtain the same amount of RSSI increase, a larger
transmission power increase is needed at a longer distance. However, in reality, this
rule doesn’t always hold. For example, in Figures 2(a) and 2(c), the slopes of RSSI
curves at a distance of 18 feet are bigger than those at a distance of 12 feet, which is
caused by multipath reflection and scattering [Zhao and Govindan 2003]. Therefore,
this measured correlation is a better reflection of the communication reality.

The shapes of RSSI/LQI curves based on the results from a grass field (Figures 2(a)
and 2(b)), a parking lot (Figures 2(c) and 2(d)), and a corridor (Figures 2(e) and 2(f))
are significantly different from one another, even with the same distance and antenna
direction between a pair of nodes. For example, with a transmission power level of 20
and a distance of 12 feet, the RSSI is −90dBm on a grass field (Figure 2(a)), while
it is above −70dBm in a corridor (Figure 2(e)). Even though the curves for 12 feet
on a grass field and on a parking lot are similar (Figures 2(a) and 2(c)), the 6-foot
curves in these two environments are not quite the same (Figures 2(a) and 2(c)). These
experimental results confirm that radio propagation among low-power sensor devices
can be influenced largely by environment [Zhao and Govindan 2003; Zhou et al. 2004;
Ganesan et al. 2002]. Moreover, RSSI/LQI with specified transmission power and dis-
tance varies in a very small range, and the degree of variations is related to the envi-
ronment. According to the confidence intervals (97%) shown in Figure 2, RSSI readings
are more stable than LQI. The confidence intervals of RSSI are not observable at most
of the sampling points in Figures 2(a), 2(c), and 2(e).

2.2. Investigation of Temporal Impact

We also investigate the impact of time on the correlation between transmission power
and link quality. Empirical results in this section suggest that this correlation changes
slowly but noticeably over a long period of time. Therefore, online transmission power
control is requisite to maintain the quality of communication over time.

A 72-hour outdoor experiment is conducted to demonstrate the variations of the radio
communication quality over time. We place nine MICAz motes in a line with a 3-foot
spacing. These motes are wrapped in Tupperware containers to protect against the
weather. The Tupperware containers are placed in brushwood. They are about 0.5 feet
high above the ground because the brushwood is very dense. During the experiment,
each mote sends out a group of 20 packets at each transmission power level every hour.
The transmission rate is 10 packets per second. All the other motes receive and record
the average RSSI and the number of packets they received at each transmission power
level. The transmissions of different motes are scheduled at different times to avoid
collision.

In this experiment, data obtained from different pairs exhibit similar trends. Figure 3
presents our empirical data obtained from a pair of motes at a distance of 9 feet apart.
Each curve represents the correlation between transmission power and RSSI at a
specific time. The correlation between transmission power and RSSI every 8 hours is
plotted in Figure 3(a). The shapes of these curves are different due to environmental
dynamics. As a result, different transmission power levels are needed to reach the same
link quality at different times. For example, to maintain an RSSI value at −89dBm, the
transmission power level needs to be 11 at 0 AM on the first day, while at 4 PM on the
second day the transmission power level needs to be 20. Figure 3(b) shows the hourly
changes of the correlation. From Figure 3(b), we can see that the relation between
transmission power and RSSI changes more gradually and continuously than that in
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Fig. 3. Transmission power versus RSSI at different times.

Figure 3(a). For example, the maximum change in RSSI is 8dBm over an 8-hour period
in Figure 3(a), while it is 3dBm over a 1-hour period in Figure 3(b).

These curves are approximately parallel, and the relationship between transmission
power and RSSI varies differently at different times of day. For example, in Figure 3(a),
the curve at 4 PM on the first day is much lower than the curve at 8 AM on the first
day. The same variation happens on curves at 8 AM and 4 PM on the second day,
but the degree of variation is different. All these results indicate that it is critical for
transmission power control algorithms proposed for sensor networks to address the
temporal dynamics of communication quality.

2.3. Dynamics of Transmission Power Control

To establish an effective transmission power control mechanism, we need to understand
the dynamics between link qualities and RSSI/LQI values. In this section, we present
empirical results that demonstrate the relation between the link quality and RSSI/LQI.
The key observations, which serve as the basis of our work, are as follows:

—Both RSSI and LQI can be effectively used as binary link quality metrics for trans-
mission power control.

—The link quality between a pair of motes is a detectable function of transmission
power.

2.3.1. Link Quality Threshold. Wireless link quality refers to the radio channel commu-
nication performance between a pair of nodes. The PRR (packet reception ratio) is the
most direct metric for link quality. However, the PRR value can only be obtained sta-
tistically over a long period of time. Our experiments indicate that both RSSI and LQI
can be used effectively as binary link quality metrics for transmission power control.1
We record the PRR and the average RSSI/LQI for every group of 100 packets from a
grass field (Figures 4(a) and 4(d)), a parking lot (Figures 4(b) and 4(e)), and a corridor
(Figures 4(c) and 4(f)). All experimental results show that both RSSI and LQI have
a strong relationship with PRR. There is a clear threshold to achieve a nearly per-
fect PRR. However, these thresholds are slightly different in different environments.
Take RSSI as an example: the 95% PRR threshold of RSSI is around −90dBm on the

1It is still controversial whether RSSI or LQI is a better indicator on link quality [Zhao and Govindan 2003;
Reijers et al. 2004; Lal et al. 2003].
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Fig. 4. RSSI versus PRR in different environments.

grass field (Figure 4(a)), −91dBm on the parking lot (Figure 4(b)), and −89dBm in the
corridor (Figure 4(c)).

2.3.2. Relations Between Transmission Power and RSSI/LQI. Radio irregularity results in
radio signal strength variation in different directions, but the signal strength at any
point within the radio transmission range has a detectable correlation with transmis-
sion power in a short time period.

In short-term experiments, the correlation between transmission power and
RSSI/LQI for a pair of motes at a certain distance is generally monotonic and continu-
ous. From Figure 2, the overall trend of RSSI increases linearly when the transmission
power increases.

However, RSSI/LQI fluctuates in a small range at any fixed transmission power level.
So, the correlation between transmission power and RSSI/LQI is not deterministic. For
example, Figure 5 shows the RSSI upper bound and lower bound of 100 received packets
at each transmission power level when we place two motes 6 feet apart on a grass field.
This result confirms the observation from previous studies [Zhao and Govindan 2003;
Zhou et al. 2004; Ganesan et al. 2002].

There are mainly three reasons for the fluctuation in the RSSI and LQI curves.
First, fading [Shankar 2001] causes signal strength variation at any specific distance.
Second, the background noise impairs the channel quality seriously when the radio
signal is not significantly stronger than the noise signal. Third, the radio hardware
doesn’t provide strictly stable functionality [ChipconCC2420 2005].

Since the variation is small, this relation can be approximated by a linear curve.
The correlation between RSSI and transmission power is approximately linear, and
the correlation between LQI and transmission power is also approximately linear in
a range. From the confidence intervals in Figure 2, we can see that RSSI and LQI
are both relatively stable when these values are not small. All the points with confi-
dence intervals bigger than 1 correspond to low link quality points in Figure 4, and
the RSSI/LQI values that have the most fluctuations are below the good link quality
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Fig. 5. Transmission power versus RSSI.

thresholds. Since we are only interested in RSSI/LQI samplings that are above or equal
to the good link quality threshold, it is feasible to use a linear curve to approximate
this correlation. This linear curve is built based on samples of RSSI/LQI. This curve
roughly represents the in situ correlation between RSSI/LQI and transmission power.

This in situ correlation between transmission power and RSSI/LQI is largely influ-
enced by environments, and this correlation changes over time. Both the shape and
the degree of variation depend on the environment. This correlation also dynamically
fluctuates when the surrounding environmental conditions change. The fluctuation is
continuous, and the changing speed depends on many factors, among which the degree
of environmental variation is one of the main factors.

3. DESIGN OF ATPC

Guided by the observations obtained from empirical experiments, in this section, we
propose our Adaptive Transmission Power Control (ATPC) design. The objectives of
ATPC are (1) to make every node in a sensor network find the minimum transmission
power levels that can provide good link qualities for its neighboring nodes, to address
the spatial impact, and (2) to dynamically change the pairwise transmission power
level over time, to address the temporal impact. Through ATPC, we can maintain good
link qualities between pairs of nodes with the in situ transmission power control.

Figure 6 shows the main idea of ATPC: a neighbor table is maintained at each node
and a feedback closed loop for transmission power control runs between each pair of
nodes. The neighbor table contains the proper transmission power levels that this node
should use for its neighboring nodes and the parameters for the linear predictive models
of transmission power control. The proper transmission power level is defined here as
the minimum transmission power level that supports a good link quality between a
pair of nodes. The linear transmission power predictive model is used to describe the in
situ relation between the transmission powers and link qualities. Our empirical data
indicate that this in situ relation is not strictly linear. Therefore, we cannot use this
model to calculate the transmission power directly. Our solution is to apply feedback
control theory to form a closed loop to gradually adjust the transmission power. It is
known that feedback control allows a linear model to converge within the region when
a nonlinear system can be approximated by a linear model, so we can safely design
a small-signal linear control for our system, even if our linear model is just a rough
approximation of reality.
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Fig. 6. Overview of the pairwise ATPC design.

3.1. Predictive Model for Transmission Power Control

The design objective is to establish models that reflect the correlation of the transmis-
sion power and the link quality between the senders and the receivers. Based on our
empirical study and analysis in Section 2, we formulate a predictive model to charac-
terize the relation between transmission power and link quality. Since no single model
can capture precisely the per-network or even per-node behavior, we shall establish
pairwise models, reflecting the in situ impact on individual links. Based on these mod-
els, we can predict the proper transmission power level that leads to the link quality
threshold.

The idea of this predictive model is to use a function to approximate the distribution
of RSSIs at different transmission power levels and to adapt to environmental changes
by modifying the function over time. This function is constructed from sample pairs of
the transmission power levels and RSSIs via a curve-fitting approach. To obtain these
samples, every node broadcasts a group of beacons at different transmission power
levels, and its neighbors record the RSSI of each beacon that they can hear and return
those values.

We formulate this predictive model in the following way. Technically, this model uses
a vector TP and a matrix R. TP = {tp1, tp2, . . . , tpN}. TP is the vector containing dif-
ferent transmission power levels that this mote uses to send out beacons. |TP| = N. N,
the number of different transmission power levels, is subject to the accuracy require-
ment for applications. Ideally the more sampling data we have, the more accurate this
model could be. Matrix R consists of a set of RSSI vectors Ri, one for each neighbor
(R = {R1, R2, . . . , Rn}T ). Ri = {r1

i , r2
i , . . . , rN

i } is the RSSI vector for the neighbor i,
in which r j

i is an RSSI value measured at node i corresponding to the beacon sent by
transmission power level tpj . We use a linear function (Equation (1)) to characterize
the relationship between transmission power and RSSI on a pairwise basis:

ri(tpj) = ai · tpj + bi. (1)

We adopt a least square approximation, which requires little computation overhead
and can be easily applied in sensor devices. Based on the vectors of samples, the coeffi-
cients ai and bi of Equation (1) are determined through this least square approximation
method by minimizing S2: ∑ (

ri(tpj) − r j
i

)2 = S2. (2)
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Accordingly, the estimated value of ai and bi can be obtained in Equation (3):[
âi

b̂i

]
= 1

N
∑N

j=1 (tpj)2 − ( ∑N
j=1 tpj

)2 ×
[∑N

j=1 r j
i

∑N
j=1 (tpj)2− ∑N

j=1 tpj
∑N

j=1 tpj · r j
i

N
∑N

j=1 tpj · r j
i − ∑N

j=1 tpj
∑N

j=1 r j
i

]
,

(3)

where i is the neighboring node’s ID and j is the number of transmissions attempted.
Using âi and b̂i together with a link quality threshold RSSILQ identified based on
experiments in Section 2.3, we can calculate the desired transmission power:

tpj =
[

RSSILQ − b̂i

âi

]
∈ TP,

where [·] means the function that rounds the inside value to the nearest integer in the
set TP.

Note that Equation (3) only establishes an initial model. We need to update this
model continuously while the environment changes over time in a running system.
Basically, the values of ai and bi are functions of time. These functions allow us to use
the latest samples to adjust our curve model dynamically. Based on our experimental
results in Section 2, ai, the slope of a curve, changes slightly in our 3-day experiment,
while bi changes noticeably over time. We assume the real model of the linear function
for the relationship between transmission power and RSSI on a pairwise basis at time
t is

ri(tp(t)) = ai · tp(t) + bi(t). (4)

Therefore, once the predictive model of ATPC is built, ai does not change any longer.
bi(t) is calculated by the latest transmission power and RSSI pairs from the following
feedback-based equation:

�b̂i(t) = b̂i(t) − b̂i(t + 1)

=
∑K

k=1[RSSILQ − ri,k(t − 1)]
K

= RSSILQ − ri(t − 1),

(5)

where ri(t − 1) is the average value of K readings denoted by

ri(t − 1) = 1
K

K∑
k=1

ri,k(t − 1). (6)

Here, ri,k(t − 1), k = 1, . . . , K is one reading of the RSSI value of the neighboring node i
during time period t − 1, and K is the number of feedback responses received from this
neighboring node at time period t − 1. Thus, we deduct the error (Equation (5)) from
the previous estimation and get a new estimation of bi(t) as

b̂i(t) = b̂i(t − 1) − �b̂i(t). (7)

The transmission power at time t is then adjusted given the adapted b̂i(t) as

tp(t) =
[

RSSILQ − b̂i(t)
ai

]
. (8)

Although the link quality varies significantly over a long period of time, it changes
gradually and continuously at a slow rate. Our experiments indicate that one packet
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Fig. 7. Feedback closed loop overview for ATPC.

per hour between a pair is enough to maintain the freshness of the model in a natural
environment. If the network has a reasonable amount of traffic, such as several packets
per hour, nodes can use these packets to measure link quality change and piggyback
RSSI readings. In this way, these models are refreshed with little overhead.

3.2. Analysis of ATPC Model

We use the average feedback value of RSSI to re-estimate b̂i(t) and adjust the transmis-
sion power tp(t) according to the desired RSSI threshold RSSILQ at every time step t.
In this subsection, we analyze conditions that the RSSI value will fall into the desired
range when we apply the tp(t) value computed by the ATPC model in this article.

We make the following assumptions in this subsection:

(1) We have the exact value of RSSILQ (middle of the range of the upper bound RSSIH
and lower bound RSSIL of RSSI value) set for ATPC model.

(2) The measurement of ri,k(t − 1), k = 1, . . . , K is accurate; that is, the RSSI value
calculated from the real model equals the measured average value. It means

ri(t − 1) = ri(tp(t − 1)),

where ri(tp(t − 1)) represents the true RSSI value after we sent tp(t − 1) at time
t − 1.

3.2.1. When the Estimated âi Is Equal to ai . When the estimated slope âi of Equation (4)
equals the true value of ai (from the experiment figures we know that ai > 0), that is,
âi = ai > 0, the estimated model of Equation (4) only has a time-varying parameter
b̂i(t) to be adjusted:

r̂i(tp(t)) = ai · tp(t) + b̂i(t). (9)

Here, r̂i(tp(t)) is the RSSI we calculate based on the newly estimated b̂i(t) value at time
t, given measurements of ri(t − 1).

Assume we have received ri(tp(t)) = ri(t), and ri(tp(t)) is not in the desired range. To
study the difference between ri(tp(t + 1)) and ri(tp(t)), we plug Equation (8) of tp(t) into
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the model described in Equation (4) and get

ri(tp(t + 1)) − ri(tp(t))
= ai · tp(t + 1) + bi(t + 1) − (ai · tp(t) + bi(t))

= ai ·
([

RSSILQ − b̂i(t + 1)
ai

]
−

[
RSSILQ − b̂i(t)

ai

])
+ bi(t + 1) − bi(t).

Here tp(t) is an integer, such that

RSSILQ − b̂i(t)
ai

− 1 ≤ tp(t) =
[

RSSILQ − b̂i(t)
ai

]
≤ RSSILQ − b̂i(t)

ai
+ 1.

Thus, ri(tp(t + 1)) − ri(tp(t)) satisfies

ai
b̂i(t) − b̂i(t + 1)

ai
+ bi(t + 1) − bi(t) − 2ai

≤ ri(tp(t + 1)) − ri(tp(t))

≤ ai
b̂i(t) − b̂i(t + 1)

ai
+ bi(t + 1) − bi(t) + 2ai.

By Equation (5), the previous inequality is equivalent to

RSSILQ − ri(t) + bi(t + 1) − bi(t) − 2ai

≤ ri(tp(t + 1)) − ri(tp(t))
≤ RSSILQ − ri(t) + bi(t + 1) − bi(t) + 2ai.

To get a more accurate range of ri(tp(t + 1)) − ri(tp(t)), we define �It to measure how
much the integer approximation of tp (t) differs from the original value of RSSILQ−b̂i (t+1)

ai
as

�It =
[

RSSILQ − b̂i(t)
ai

]
− RSSILQ − b̂i(t)

ai
,

�It+1 =
[

RSSILQ − b̂i(t + 1)
ai

]
− RSSILQ − b̂i(t + 1)

ai
,

where |�It| < 1, t = 1, 2, . . . , and then

ri(tp(t + 1)) − ri(tp(t)) = RSSILQ − ri(t) + ai(�It+1 − �It) + bi(t + 1) − bi(t).

The value of ri(tp(t + 1)) satisfies

ri(tp(t + 1)) = RSSILQ + ai(�It+1 − �It) + bi(t + 1) − bi(t). (10)

We then derive conditions that ri(tp(t + 1)) falls in different ranges based on Equa-
tion (10).

The necessary and sufficient condition for RSSIL ≤ ri(tp (t + 1)) ≤ RSSIH is

RSSIL − RSSILQ − ai(�It+1 − �It) ≤ bi(t + 1) − bi(t)
≤ RSSIH − RSSILQ − ai(�It+1 − �It).

(11)

The necessary and sufficient condition for ri(tp (t + 1)) < RSSIL is

bi(t + 1) − bi(t) < RSSIL − RSSILQ − ai(�It+1 − �It).
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The necessary and sufficient condition for ri(tp (t + 1)) > RSSIH is

bi(t + 1) − bi(t) >RSSIH − RSSILQ − ai(�It+1 − �It).

A special case when ri(tp (t + 1)) will always fall in the desired range:
Since |�It| < 1, |�It+1| < 1, �It+1 − �It is bounded in

|�It+1 − �It| < 2.

When RSSIH − RSSIL > 4ai(ai > 0), the following inequalities always hold:

RSSIL − RSSILQ − ai(�It+1 − �It) < 0,

RSSIH − RSSILQ − ai(�It+1 − �It) > 0.

When bi(t) = bi(t+1) is satisfied (i.e., the true parameter bi does not change with time),
we always have ri(tp (t + 1)) ∈ [RSSIL, RSSIH], because the following inequality is
true:

RSSIL − RSSILQ − ai(�It+1 − �It) ≤ 0 ≤ RSSIH − RSSILQ − ai(�It+1 − �It).

This is a special case when the assumptions in Equations (1) and (2) hold, and bi(t)
stays static during time t and t + 1; we directly get a desired RSSI value by the ATPC
method introduced in this article.

Conclusion: We summarize the previous process to reach the following conclusion:
given the function of the relation between transmission power and RSSI at time t, t +1
as in Equation (4), and the condition that the estimation of the slope is accurate, that
is, âi = ai, the RSSI value will be in the desired range (ri(t + 1) ∈ [RSSIL, RSSIH]) if
and only if the difference between bi(t), bi(t + 1) satisfies Equation (11).

3.2.2. When the Estimation of ai Has an Error �ai . In the previous model analysis section,
we assume that the real ai does not change with time, that is, a = ai(1) = ai(2) = ai(3) =
. . . , and we have an accurate estimation of ai, that is, âi = ai > 0. In practice, this may
not be the case, and it is possible that the real ai(t) slightly changes with time t or the
estimated âi we use in Equation (9) is inaccurate. In either case, the estimation error
is bounded, and we show the complete conditions for ri(tp (t + 1)) to be regulated inside
[RSSIL, RSSIH], considering errors of âi and value changes of bi(t).

We assume the real ai(t) in Equation (4) is the estimated âi in Equation (9) plus some
bounded error. Define the estimation error �ai(t) as

ai(t) = âi + �ai(t), �ai(t) ∈ R, |�ai(t)| < εi, t = 1, 2, . . . . (12)

In the following discussion, we show how �ai(t) will affect the results when we adjust
the transmission power according to an inaccurate âi.

Considering inaccurate âi, we define the transmission power according to measured
average ri(t), estimated b̂i(t), âi as

tp (t) =
[

RSSILQ − b̂i(t)
âi

]
. (13)

Assume the integer approximation has a tail measured by

�I′
t =

[
RSSILQ − b̂i(t)

âi

]
− RSSILQ − b̂i(t)

âi
. (14)

To show the conditions for r(tp (t+1)) ∈ [RSSIL, RSSIH] when âi �= ai(t) or âi �= ai(t+1)
or ai(t) �= ai(t + 1), we derive the equation of r(tp (t + 1)) similar to the analysis process
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for time-invariant âi = ai:

ri(tp (t + 1)) − ri(tp (t))
= ai(t + 1) · tp (t + 1) + bi(t + 1) − (ai(t) · tp (t) + bi(t))

= ai(t+1)

(
RSSILQ − b̂i(t + 1)

âi
+ �I′

t+1

)
−ai(t)

(
RSSILQ − b̂i(t)

âi
+�I′

t

)

+ bi(t+1) − bi(t)

= (2RSSILQ − ri(t) − b̂i(t))
(

1 + �ai(t + 1)
âi

)
− (RSSILQ − b̂i(t))

(
1 + �ai(t)

âi

)
+ (âi + �ai(t + 1))�I′

t+1 − (âi + �ai(t))�I′
t + bi(t + 1) − bi(t)

= RSSILQ

(
1 + 2�ai(t + 1) − �ai(t)

âi

)
− (âi + �ai(t))�I′

t

+ b̂i(t)
�ai(t) − �ai(t + 1)

âi
+ (âi + �ai(t + 1))�I′

t+1

− ri(t)
(

1 + �ai(t + 1)
âi

)
+ bi(t + 1) − bi(t).

Assume the measured RSSI is a true value (or the error can be neglected), that is,
ri(t) = ri(tp (t)); then

ri(tp (t + 1))

= RSSILQ

(
1 + 2�ai(t + 1) − �ai(t)

âi

)
− ri(t)

�ai(t + 1)
âi

+ b̂i(t)
�ai(t) − �ai(t + 1)

âi
+ (âi + �ai(t + 1))�I′

t+1− (âi + �ai(t))�I′
t + bi(t + 1)− bi(t).

Thus, conditions for ri(tp (t + 1)) to fall in different intervals are described as follows:
Condition for RSSIL ≤ ri(tp (t + 1)) ≤ RSSIH :

RSSIL − RSSILQ

(
1 + 2�ai(t + 1) − �ai(t)

âi

)
+ ri(t)

�ai(t + 1)
âi( j)

+ b̂i(t)
�ai(t) − �ai(t + 1)

âi
+ (âi + �ai(t + 1))�I′

t+1 − (âi + �ai(t))�I′
t

≤ bi( j + 1) − bi( j)

≤ RSSIH − RSSILQ

(
1 + 2�ai(t + 1) − �ai(t)

âi

)
+ ri(t)

�ai(t + 1)
âi( j)

+ b̂i(t)
�ai(t) − �ai(t + 1)

âi
+ (âi + �ai(t + 1))�I′

t+1 − (âi + �ai(t))�I′
t

(15)

Compare the above inequality with (11), the last two items with �I′
t+1 and �I′

t are
related to �ai(t + 1) and �ai(t), respectively. When �ai(t) ≈ 0 and �ai(t + 1) ≈ 0, or the
estimation error of âi is negligible, inequality (15) reduces to the form of (11).
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Similarly, conditions for ri(tp (t+1)) outside the range [RSSIL, RSSIH] are as follows:
Condition for ri(tp (t + 1)) < RSSIL:

bi(t + 1) − bi(t)

< RSSIL − RSSILQ

(
1 + 2�ai(t + 1) − �ai(t)

âi

)
+ ri(t)

�ai(t + 1)
âi( j)

+ b̂i(t)
�ai(t) − �ai(t + 1)

âi
+ (âi + �ai(t + 1))�I′

t+1 − (âi + �ai(t))�I′
t

Condition for ri(tp (t + 1)) > RSSIH :

bi(t + 1) − bi(t)

> RSSIH − RSSILQ

(
1 + 2�ai(t + 1) − �ai(t)

âi

)
+ ri(t)

�ai(t + 1)
âi( j)

+ b̂i(t)
�ai(t) − �ai(t + 1)

âi
+ (âi + �ai(t + 1))�I′

t+1 − (âi + �ai(t))�I′
t

Conclusion: Considering both the estimation error and value change of parameters
ai(t), bi(t) in Equation (9), we show a similar inequality form of conditions for ri(tp (t+1))
to be in the desired range. When the estimation error of ai(t) is insignificant, the
conditions reduce to the same with those in Section 3.2.1.

The conditions for ri(tp (t + 1)) to fall in [RSSIL, RSSH] are related to the difference
between the true values of bi(t + 1) and bi(t). The adjustment process requires that
bi(t + 1) − bi(t) is in a specific range to terminate the transmission power adjustment.
When the RSSI feedback value keeps oscillating outside the desired range after many
steps, one possible reason is that the difference between bi(t + 1) and bi(t) is outside
the corresponding range. If we increase the sampling rate under this case, the range
width of bi(t + 1) − bi(t) is expected to reduce, since the true parameters of Equation (4)
are expected to vary in a smaller way in a shorter time. Hence, we have a better chance
to regulate the signal strength inside the desired range in fewer following steps by
increasing the sampling rate.

3.3. Adaptive Design

3.3.1. Adaptive Sampling. The adaptive transmission power controller can use both data
and control packets to obtain link quality samples; RSSI feedbacks of these packets
from neighboring nodes are sent back to the controller to adjust the transmission
power level and update the ATPC control model during runtime. Regardless of feedback
packet loss, the ATPC controller obtains a sample on each link quality when the sender
node transmits a packet and the receiver node receives it.

The traditional control designs [Jung and Vaidya 2002; He et al. 2003] typically
require a fixed sampling rate so that the control loop can capture the changes of the
measured signal and take adjustments. This sampling rate poses a tradeoff on control
performance and cost. A high sampling rate provides prompt information on the link
quality, but it also uses more bandwidth and energy to transmit these packets. A
low sampling rate reduces the control cost in terms of bandwidth and energy but can
cause the power control to converge slowly, even causing temporary packet loss. A
good sampling rate is very important for control design to achieve desired stability and
control accuracy.

We propose an adaptive sampling approach to find a good tradeoff between control
performance and cost. The adaptive sampling design achieves both fast reactions to
link dynamics and low energy cost. The basic idea is to change the sampling rate
according to the dynamics of link quality. When the link quality varies quickly and
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data packets go along this link, nodes need to sample link quality at a high rate for
agile reaction to link quality changes. On the other hand, nodes sample link quality at
a low rate when link quality does not change significantly or few data packets go along
this link to save energy.

The adaptive transmission power control changes the sampling rate in the following
four events:

—If either one of the following two conditions happen, a node decreases the sampling
rate by a factor of p: (1) the received signal strength of the incoming packet stays
within the specified range of good link quality, or (2) no data packets are transmitted
along this link in the last sampling cycle.

—A node increases the sampling rate by a factor of q if received signal strength of the
incoming packet changes significantly outside the specified range of good link quality
by a threshold s.

—A node transmits an on-demand sampling packet if it receives a packet request for
sampling from a neighbor node. A neighbor requests for sampling if it does not hear
from the sender for a long period l, to maintain link connectivity in case data packets
and regular sampling packets on this link get lost.

—Data packets can serve as the sampling packets and feedback packets. If data packets
are transmitted in a sampling period, nodes change the sampling rate in the following
two conditions: (1) if the RSSI samples stay within the specified range of good link
quality, only the last data packet in this period serves as the sampling packet, and
(2) if some RSSI samples do not stay within the specified range of good link quality,
these packets serve as the sampling packets.

In a network with stable link qualities, both the second and third conditions rarely
happen. Therefore, the sampling rate decreases exponentially, up to a constant thresh-
old Rhigh. When the link quality varies significantly, affected nodes reset their sampling
rate to Rlow. So the power control can converge quickley without losing packets.

3.3.2. Adaptive Link Quality Threshold. The set point value in the transmission power
control is critical for our power control design to achieve reliable link quality. This set
point represents the minimum receiving signal strength of packets that allows them
to be received reliably. The underlying model of this design is the SNR model [Tse and
Viswanath 2005; Sarkar et al. 2007]. According to the SNR model, if the signal power
(represented by RSSI)–to–background noise power ratio is larger than a fixed value,
the noise cannot corrupt the signal. Therefore, if the background noise level does not
change, the RSSI reading can determine if the packets can be received successfully.

Existing topology control works usually assume a fixed link quality threshold in all
environments. However, this simplified assumption does not hold in real systems. The
background noise level may change in different locations and over time. Adjusting the
RSSI threshold based on the background noise level is critical for our power control
design. If we use a high RSSI threshold as the set point, the link would be reliable
but the energy saving is limited. In order to save energy, we should use a low RSSI
threshold as the set point, but it can cause packet loss where the background noise
level is high.

To find an accurate RSSI threshold, we have conducted extensive experiments in
different locations and environments. Our experimental results show that the RSSI
threshold has different values in different environments, as shown in Section 2.3.1:
the 95% PRR threshold of RSSI is around −90dBm on the grass field (Figure 4(a)),
−91dBm on the parking lot (Figure 4(b)), and −89dBm in the corridor (Figure 4(c)).
These empirical values serve as the basis for our selection of the set point in real
deployment.
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3.4. Reliable Unicast, Multicast, and Broadcast

In wireless sensor networks, unicast, multicast, and broadcast are three main commu-
nication services to transfer information from one node to other nodes. By integrating
ATPC with these main communication paradigms at the MAC layer, we achieve reli-
able unicast, multicast, and broadcast. For each packet transmission, the power control
integration allows us to use the transmission power (if existing) that can achieve re-
liable packet delivery. The existing MAC layer services need to be modified slightly.
Here we propose our designs for power-controlled unicast, multicast, and broadcast.

Unicast at the MAC layer typically transmits a packet with default transmission
power. With ATPC, at the MAC layer, every unicast procedure needs to find the cor-
responding transmission power level in the ATPC neighbor table given the neighbor
id in the packet, and then set the transmission power level before the original proce-
dure. The power level provided by the ATPC table also indicates whether this neighbor
is within the node’s reliable communication range. For example, if the transmission
power level is less than the maximum, packets transmitted to this neighbor will be
reliably received.

Multicast and broadcast with power control are also important, since many routing
protocols, such as the Geographic Forwarding (GF) algorithm, rely on reliable links to
forward packets to next-hop neighbors. ATPC provides the reliable link list that can be
naturally used by these routing protocols. Therefore, we design MAC layer multicast
and broadcast with ATPC.

Since broadcast is a special case of multicast, here we use multicast to illustrate our
design. When a multicast transmission is processed to send a packet to a subset of
neighbors, it needs to find the maximal transmission power level of the transmission
power levels for these neighbors in the ATPC table, and then set this power level for the
multicast transmission. Every neighbor in this multicast subset who receive this packet
will transmit a feedback to the sender with its RSSI as feedback. The power controller
at the sender makes a model update only on the entries where the transmission power
levels are obtained.

In the following three conditions, the reliable neighbor set changes: dramatic link
quality changes, a new node appears, and an original node disappears. ATPC automat-
ically detects link quality variations over time and updates the reliable neighbor set, as
well as nodes joining/leaving the network, since it has periodic beacons with maximum
power level, which keeps all the topology information.

For other routing algorithm designs, such as opportunistic routing, ATPC is not
suitable and nodes should use the maximum transmission power for each packet
transmission.

3.5. Implementation of ATPC

The implementation of ATPC on sensor devices is presented in this subsection. We
discuss mainly four aspects: (1) the two-phase design and the feedback closed loop
for pairwise transmission power control, (2) the parameters that affect system perfor-
mance, (3) the techniques that optimize system performance and reduce cost, and (4)
the other issues.

ATPC has two phases, the initialization phase and the runtime tuning phase.
In the initialization phase, a mote computes a predictive model and chooses a proper

transmission power level based on that model for each neighbor. Since wireless com-
munication is broadcast in nature, all the neighbors can receive beacons and measure
link qualities in parallel. Based on this property, every node broadcasts beacons with
different transmission power levels in the initialization phase, and its neighbors mea-
sure RSSI/LQI values corresponding to these beacons and send these values back by a
notification packet.
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In the runtime tuning phase, a lightweight feedback mechanism is adopted to mon-
itor the link quality change and tune the transmission power online. Figure 7 is an
overview picture of the feedback mechanism in ATPC. To simplify the description, we
show a pair of nodes. Each node has an ATPC module for transmission power control.
This module adopts a predictive model described in the previous subsection for each
neighbor. It also maintains a list of proper transmission power levels for neighbors of
this mote. When node A has a packet to send to its neighbor B, it first adjusts the
transmission power to the level indicated by its neighbor table in the ATPC module
and then transmits the packet. When receiving this packet, the link quality moni-
tor module at its neighbor B takes a measurement of the link quality. Based on the
difference between the desired link quality and actual measurements, the link qual-
ity monitor module decides whether a notification packet is necessary. A notification
packet is necessary when (1) the link quality falls below the desired level or (2) the link
quality is good but the current signal energy is so high that it wastes the transmission
energy. The notification packet contains the measured link quality difference. When
node A receives a notification from its neighbor B, the ATPC module in node A uses
the link quality difference as the input to the predictive model and calculates a new
transmission power level for its neighbor B.

If achieving good link quality requires using the maximum transmission power level,
ATPC adjusts the transmission power to the maximum level. If using the maximum
transmission power level cannot achieve good link quality, this link is marked so that
routing protocols, like those in Singh et al. [1998], Lin et al. [2009], Subbarao [1999],
Gomez et al. [2003], Ganesan et al. [2001], Chipara et al. [2006], and Lin et al. [2008],
can choose another route based on the neighbor table provided by ATPC. If all the
routes cannot provide good link quality, the mote can do best-effort transmission to a
neighbor with relative good link quality by using the maximum transmission power
level.

There is a tradeoff between accuracy and cost when applying ATPC. The practical
values of these parameters are obtained from analysis and empirical results. These
important parameters include the link quality thresholds, the sampling rate of trans-
mission power control, the number of sample packets in the initialization phase, and
the small-signal adjustment of transmission power control, which is proportional to the
link quality error. Choices of parameters are essential for obtaining good performance.

The link quality monitor can have any of the following three criteria to estimate
link quality changes. The first one is the link quality reflected by the RSSI value, the
second one is the LQI value if available, and the last one is the packet reception ratio
as detected by sequence number monitoring. Our design is compatible with all these
methods. Without loss of generality, we use both RSSI and PRR in our experiments. We
note that the theory described in Section 3.1 provides good guidance in ideal conditions.

To monitor the link quality by referring to RSSI values, we set two link quality
thresholds. LQupper is an upper threshold and LQlower is a lower threshold. As long as
the RSSI value of the received packet lies within this range, the system is in the steady
state. When a link is in the steady state, the receiver does not need to send a notification
packet to the sender, and the sender does not adjust the transmission power. The range
of [LQlower, LQupper] is critical to energy savings and tuning accuracy. If the range
of [LQlower, LQupper] is too small, radio signal fading may result in the oscillation of
transmission power. If the range of [LQlower, LQupper] is too big, the transmission power
control result may not be accurate enough, and the optimal power control will not
be achieved. In our implementation, the value of LQlower is chosen to guarantee that
the link quality does not drop below the tolerance level. With respect to LQupper in our
design, its value is chosen to trade off the energy cost paid to transmit notifications and
the energy saved to transmit data packets. This is a simple calculation for choosing
LQupper, which compares the energy consumed by sending a control packet with the
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energy saved for ndata packets after tuning the transmission power. In our experiment,
we use n = 2 for simplicity. Thus, energy savings are achieved when at least two data
packets are transmitted using the tuned transmission power level, compared to the
energy consumed by transmitting a notification packet.

A good feedback sampling rate is essential to maintain the link quality at a desired
level while minimizing the control overhead. Two main factors influence the feedback
sampling rate: link quality dynamics and network traffic. On one hand, the higher the
link quality dynamics, the higher the sampling rate needed. Based on our empirical
results in Figure 3, the maximum link quality variation per 8 hours is 8dBm, and the
maximum link quality variation per hour is 3dBm. In order to keep the link quality
error under 3dBm, a sampling rate of one packet per hour is necessary. On the other
hand, the regular network traffic can be used for ATPC sampling purposes and con-
sidered as ATPC’s input. When the network traffic is higher than this sampling rate,
notification packets can be sent on demand. There is only a low number of notification
packets needed, and the control overhead is minimized. Our running system evaluation
demonstrates that this design is very efficient. On average, eight on-demand notifica-
tion packets are sent per link per day to deal with the runtime link quality dynamics.

In applications with periodic multihop traffic, an overhearing approach can save the
overhead of notification packets. Along the data transfer route, when a node is forward-
ing packets to its next hop, it can incorporate an extra byte to record the RSSI value of
the previous hop transmission in the packet, and then the sender of the previous hop
can overhear the corresponding RSSI, thus eliminating explicit notifications.

Another optimization technique is to use ATPC only on critical paths with heavy
traffic, so ATPC can extend the system lifetime while supporting a high-quality end-
to-end communication with little control overhead. For those links with a low traffic
load, directly using a conservative transmission power level is a good tradeoff between
communication quality and energy savings. This is because nodes do not need to peri-
odically generate control packets to monitor link quality.

Based on our empirical results, the RSSI readings can be affected by stochastic
environmental noise. For example, the RSSI with a certain beacon packet can be un-
expectedly high or low, which is inconsistent with the monotonic relationship between
transmission power and RSSI. Filtering such noise input can enhance the accuracy of
ATPC’s modeling. On the other hand, if some RSSI with a certain transmission power
level falls in our desired link quality range, using the corresponding transmission
power level directly also enhances ATPC’s performance.

The code for ATPC mainly includes functions for linear approximation. The code size
is 14,122 bytes in ROM. The data structures in ATPC mainly include a neighbor table,
a vector TP, and a matrix R as described in Section 3.1. For a node with 20 neighbors,
the data size is 2,167 bytes in RAM.

4. EXPERIMENTAL EVALUATION

ATPC is evaluated in outdoor environments. We first evaluate ATPC’s predictive model
described in Section 3.1 with a short-term experiment. We then describe a 72-hour
experiment to compare ATPC against network-level uniform transmission power so-
lutions and a node-level nonuniform transmission power solution. According to our
empirical results, ATPC’s advantages lie in three core aspects:

(1) ATPC maintains high communication quality over time in changing weather condi-
tions. It has significantly better link qualities than using static transmission power
in a long-term experiment, which confirms our observations in Section 2.2. More-
over, it maintains equivalent link qualities as using the maximum transmission
power solution.
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Fig. 8. Prediction accuracy.

(2) ATPC achieves significant energy savings compared to other network-level trans-
mission power solutions. ATPC only consumes 53.6% of the transmission energy of
the maximum transmission power solution and 78.8% of the transmission energy
of the network-level transmission power solution.

(3) ATPC accurately predicts the proper transmission power level and adjusts the
transmission power level in time to meet environmental changes, adapting to spa-
tial and temporal factors.

4.1. Initialization Phase

In the initialization phase of ATPC, each mote broadcasts a group of beacons. Its
neighbors record the RSSI and the corresponding transmission power level of each
beacon that they can hear and then send them back to the beaconing node. Using these
pairs of values as input for the ATPC module, the beaconing node builds the predictive
models and computes the transmission power level for each of its neighbors.

To evaluate the accuracy of the initialization phase, an experiment is conducted in
a parking lot with eight MICAz motes; it is repeated 5 times. These motes are put in
a line 3 feet apart from adjacent nodes. Each mote runs ATPC’s initialization phase in
a different time slot, sending out eight beacons at a fixed rate using different trans-
mission power levels. These transmission power levels are distributed uniformly in the
transmission power range supported by the CC2420 radio chip. After the initialization
phase of ATPC, each mote sends a group of 100 packets to its neighbors using pre-
dicted transmission power levels. Its neighbors record the average RSSI and PRR. The
experimental results are shown in Figures 8(a) and 8(b). Every point in Figure 8(a)
demonstrates a pair of the predicted transmission power level and the PRR when using
that power level. In all these experiments, the average PRR is 99.0%. From Figure 8(a),
we can see that all the RSSI readings are above or equal to −91dBm. The standard
deviation of the RSSI is 2. According to Section 2.3.1, RSSIs that are above −91dBm
mean good link quality in a parking lot. These results prove that the predictive model of
ATPC works well. Moreover, in our long-term experiments, the predicted transmission
power levels of all the nodes that were obtained in ATPC’s initialization phase are in
the desired range.

4.2. Runtime Performance

To evaluate the runtime performance, we compare ATPC against existing transmission
power control algorithms: network-level uniform solutions and a node-level nonuniform
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Fig. 9. Topology. Fig. 10. Experimental site.

solution (Nonuniform). Two kinds of network-level transmission power levels are used:
the max transmission power level (Max) and the minimum transmission power level
over nodes in the network that allows them to reach their neighbors (Uniform). A
72-hour continuous experiment is conducted to evaluate the energy savings and com-
munication quality of ATPC over time. The empirical data shows that ATPC achieves
the best overall performance in terms of communication quality and energy consump-
tion. The 3-hop end-to-end PRR of ATPC is constantly above 98% over 3 days, and
ATPC greatly saves transmission power consumption compared to network-level uni-
form transmission power solutions.

4.2.1. Experiment Setup. A 72-hour experiment is conducted on a grass field with 43
MICAz motes. These motes are deployed according to a randomly generated topology.
They form a spanning tree as shown in Figure 9. The root of the spanning tree is at
the center of Figure 9. The deployed area is a 15-by-15-meter square. Figure 10 is
a picture of the node deployment for one of our experiments on a grass field. All the
motes are placed in Tupperware containers to protect against the weather. According to
our experiments, these plastic boxes (nonconducting material) do not attenuate radio
waves significantly.

There are 24 total leaf nodes in this spanning tree. These leaf nodes report data
to the base node hourly. Each hour is evenly divided into 24 time slots, and different
leaf nodes are assigned to different time slots. Transmissions of different motes are
scheduled at different times to avoid collision. Each leaf node reports 32 packets to the
base node at a transmission rate of 15 packets per minute in its time slot. These pack-
ets are divided into four groups, corresponding to different transmission power control
solutions: ATPC, Max, Uniform, and Nonuniform. These four algorithms are evaluated
in the same environment. The predicted transmission power level obtained in ATPC’s
initialization phase is used for Nonuniform, which satisfies the assumption that it is
the minimum transmission power for each node to reach its neighbors. We use the
maximum predicted transmission power level of all nodes obtained in ATPC’s initial-
ization phase for Uniform. This transmission power level is the minimum transmission
power level over all nodes to reach their neighbors. Max, Uniform, and Nonuniform all
use static transmission power. The statistical data about number of packets sent and
received and the transmission power level used for each solution are recorded at each
mote. In this experiment, for simplicity, each node considers its parent in the spanning
tree as its neighbor. This experiment is deployed at 6 PM on March 19 and finished
at 7 PM on March 22. There was a shower that lasted for 2 hours on the morning of
March 21. Figure 11 shows the weather conditions of these days.
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Fig. 11. Weather conditions over 72 hours.

Fig. 12. E2E PRR.

4.2.2. Data Delivery Ratio. Figure 12 shows the cumulative end-to-end PRR over time.
From this figure, we can see that Max achieves 100% end-to-end PRR all the time. As
using the maximum transmission power makes the RSSI values at the receiver the
highest of all solutions, it is robust to random environmental changes and noise.

ATPC and Uniform both achieve around 98% cumulative end-to-end PRR. ATPC has
a little better performance than Uniform for 83% of the experimental time. However,
the reasons for packet loss of these two solutions are quite different. For ATPC, half of
these end-to-end links have 100% PRR. The other 12 links from leaves to the base node
suffer from random packet loss from time to time. For Uniform, the packet loss mainly
happens at two specific links. These links have the same predicted transmission power
level as the uniform transmission power level. We pick up one of these two links and
plot its PRRs over time in Figure 13. From Figure 13, we compare the PRRs of this
link when it works in Uniform and ATPC. This link quality maintained by this static
transmission power level is much more vulnerable to environmental changes. After the
first 12 hours, the PRR of the link with static transmission power in Uniform drops
dramatically, and it is above 95% PRR only 25% of the time. On the other hand, the
same link with ATPC constantly achieves above 99% PRR while exposed in the same
environment and using the same radio hardware. These two weak links are between
leaf nodes and first-level parent nodes, so the packet loss they caused does not have
a big impact on the average end-to-end PRR. However, if such a static transmission
power level is used at links with more traffic, such as a link between a two-level parent
and the base, the end-to-end communication quality would drop severely.

The Nonuniform solution has weak performance over time. All the links in this
solution are vulnerable to link quality variation. However, in the short term and in
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Fig. 13. Link quality.

relatively static weather conditions, Nonuniform can achieve more than 99% end-to-
end PRR, as shown in Figure 12. After the first 12 hours, the communication quality
of Nonuniform becomes poor and unstable. We also notice that the variation of its
trend is much bigger than other solutions. It means the end-to-end PRR with these
static transmission power levels at certain time periods can be significantly better or
worse than at other time periods of the day. This observation confirms our judgment
that the dynamics of link quality may make communication performance unstable and
unpredictable when assuming static transmission power.

Considering the quality of wireless communication, ATPC and maximum transmis-
sion power solutions are proper to apply in real systems.

4.2.3. Power Consumption. The total energy consumption of the network is measured
in the radio’s transmission mode when different schemes are used. We calculate the
total energy spent in the transmit state of the system by the following formula:

E =
n∑

i=1

max∑
j=min

(NumDij × TEj × LD + NumCi × maxTE × LC), (16)

where i is the node ID and j is the transmission power level. NumDi j is the number
of data packets sent at node i with transmission power level j. TEj is the transmis-
sion energy consumed per bit from ChipconCC2420 [2005]. LD is the length of a data
packet, which is 45 bytes. All the control packets are sent with the maximum transmis-
sion power level. NumCi is the number of control packets (beacons and notifications)
sent at node i. maxTE is the transmission energy per bit when using the maximum
transmission power level. We get maxTE also from ChipconCC2420 [2005]. LC is the
length of a control packet, which is 19 bytes. In our experiments, the ratio of the num-
ber of control packets and the number of data packets is 3.9%. The ratio of the energy
consumed by control packets and the energy consumed by data packets is 1.9%. ATPC
achieves energy-efficient transmission with small control overhead.

For better comparison, we take the energy consumption of the Max scheme as the
baseline, which is unit 1 in Figure 14. The power consumptions of the other three
schemes are represented as percentage values compared with this baseline. The em-
pirical data demonstrate that ATPC and Nonuniform consume the least transmis-
sion energy. Considering that ATPC has much better communication quality than
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Fig. 14. Transmission power consumption over time.

Nonuniform, ATPC is the most energy-efficient solution. In Figure 14, ATPC has much
less transmission energy consumption than Max and Uniform. Although ATPC has
extra beacon and feedback packets, the average transmission energy consumption of
ATPC is about 53.6% of Max and 78.8% of Uniform.

The trend of ATPC’s energy consumption varies a little bit. The main factor causing
this variation is the transmission power level variation. There are only three feedback
packets per link per day on average. Comparing ATPC with Nonuniform in the first
6 hours, ATPC has similar energy consumption as Nonuniform. The reason is that the
transmission power level of each mote does not change much in the first 6 hours. In
the next 6 hours, Nonuniform has higher energy consumption than ATPC because a
large number of nodes decrease their transmission power level to save energy in ATPC.
Later, the transmission energy of Nonuniform drops mainly because of its low PRR,
which reduces the number of transmission relays.

Max and Uniform have relatively stable transmission energy consumptions because
they use a static transmission power level and their network throughput is stable.
The transmission power level used in Uniform largely depends on the topology. In a
network with long-distance neighbors, this uniform transmission power level tends to
get close to the maximum transmission power level. Both solutions waste significant
transmission energy compared to ATPC.

The total energy consumption of Nonuniform varies because its network throughput
varies. Compared to the other solutions, it consumes the least transmission energy
over time. It doesn’t have the overhead of feedback in ATPC, but the energy is not
used efficiently due to its low communication quality. However, it may provide good
communication quality and save energy in the short term.

We choose three links and plot the average transmission power they used over time
in Figure 15. All these links constantly have above 98% PRR. From Figure 15, we have
two main observations as follows.

From a historical record of the tuning process in ATPC, it is confirmed that link qual-
ities vary significantly in reality. Though all these links work in the same environment,
the tuning rate and range of transmission power for different links can be significantly
different. We can see that Link A has a large varying range, which means high sensi-
tivity to environmental changes. The transmission power of Link C is quite stable; it is
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Fig. 15. Average transmission power level over time.

a robust link to environmental changes. The variation of transmission power of Link
B is in between. Link B is a more typical case in our experiments.

ATPC is robust in handling dynamics of link quality in reality, according to dif-
ferences of link conditions. Although all these links are exposed to the same envi-
ronment, the impacts of the environment on them are link specific. ATPC success-
fully adjusts the transmission power differently. It also confirms our judgments in
Section 2.3.2 both that environmental change is a major reason for the transmission
power adjustment and that the adjustment speed depends on the variation speed of the
environment.

To summarize, ATPC maintains above 98% end-to-end communication quality while
saving transmission power significantly. The static nonuniform transmission power
solution may work well on the short term in static environments, but its communication
qualities are very vulnerable to environmental changes. The maximum transmission
power solution is robust with regard to environmental changes but wastes transmission
energy.

5. STATE OF THE ART

There are three categories of research topics related to our ATPC: Transmission Power
Control, Topology Control, and empirical studies on wireless radio communication.

There is a small amount of research on realistic transmission power control for
wireless sensor networks. The authors of Son et al. [2004] provide a valuable study
about the impact of transmission power control on link qualities and propose a novel
blacklisting approach. The ATPC we propose is different from their work. First, since
link quality varies with time, different transmission powers are needed to maintain
the same desired link quality. ATPC uses a feedback-based scheme to pick optimal
power levels at different times; this is not addressed in Son et al. [2004]. Second, the
protocol in Son et al. [2004] fixes the number of configurable power levels, reducing the
design flexibility and also limiting the maximum power tuning accuracy that can be
achieved. Also, Jeong et al. [2007] make an experimental comparison of several existing
transmission power control algorithms, and Heidemann and Ye [2004] give a short
survey of transmission power control. Fu et al. [2012] proposed a PID control-based
solution to adjust transmission power. Lee and Chung [2011] investigate the impact
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of temperature on power control and propose a temperature-aware power adjustment
scheme.

There is some other work on transmission power control evaluated in simulation.
Ramanathan and R-Hain [2000] formulate the transmission power adjustment prob-
lem for static and dynamic network topologies. Wattenhofer et al. [2001] describe a
power control algorithm to increase transmission power to reach neighbors. The pro-
tocol in Narayanaswamy et al. [2002] introduces cluster-based transmission power
control. Li et al. [2005] propose an algorithm that increases transmission power to
reach neighbors in every cone of a certain degree. In Sabitha and Thyagarajan [2012],
a fuzzy-logic-based transmission power control design is introduced. Xing et al. [2009]
consider transmission scheduling and power control optimization. Cotuk et al. [2014]
investigate the impact of different power control strategies on network lifetime. Valli
and Dananjayan [2010] introduce a good theory-based power control scheme. Zhu et al.
[2012] study event detection in power-controlled and duty-cycled sensor networks. Most
of these works are simulation based and they ignore the in situ impact on communica-
tion quality in reality. Our approach is based on systematic empirical studies, and we
adopt a unique feedback-based approach, tuning link quality pairwise.

Topology control research is a well-studied area in ad hoc and sensor network com-
munities. The goal of a significant portion of these efforts is to achieve better network
performance, considering throughput, connectivity, network size, traffic load, and so
on. These works can be classified in three major categories according to the transmis-
sion range and power assumptions: network-level uniform transmission power [Park
and Sivakumar 2002b; Narayanaswamy et al. 2002; Bettstetter 2002; Kirousis et al.
2000; Santi and Blough 2003], node-level nonuniform transmission power [Gomez and
Campbell 2004; Bettstetter 2002; Kirousis et al. 2000; Kubisch et al. 2003; Ramanathan
and R-Hain 2000; Wattenhofer et al. 2001; Kawadia et al. 2001; Park and Sivakumar
2002a; Rodoplu and Meng 1999; Li et al. 2002], and neighbor-level transmission power
solutions [Liu and Li 2002; Xue and Kumar 2004; Blough et al. 2003]. Most of these
works are based on simulations, which carry the assumptions that the transmission
range is static and circular and that within the transmission range the link quality is
perfect and never changes. However, such assumptions do not hold in reality. There-
fore, solutions making these assumptions may lead to unstable and unpredictable com-
munication qualities. ATPC, based on empirical studies about communication reality,
addresses the practical issues of radio and link dynamics.

There are a number of experimental research results on radio communication reality
in wireless sensor networks. Hackmann et al. [2008] investigate different link qual-
ity metrics for power control in indoor environments. Srinivasan et al. [2010] present
empirical studies of wireless sensor network performances in the home environment.
In Chipara et al. [2010], hospital wireless experimental results are presented. Feng
et al. [2013] investigate the beamforming scheduling algorithm and related power
control issues. Ganesan et al. [2002], Woo et al. [2003], and Jeong et al. [2007] exten-
sively study communication reality in a large-scale sensor network. Zhao and Govindan
[2003] study the impact of spatial-temporal characteristics on packet loss and its en-
vironmental dependence on packet delivery performance in a wireless sensor network.
Zhou et al. [2004, 2011] give a lot of insight on causes of the link quality variations.
Park et al. [2010] study the impacts of key parameters in the medium access control
layer on energy consumption of the network. Reijers et al. [2004] suggest using the
RSSI value as a reliable parameter to predict a reception rate. Lal et al. [2003] study
the relationship between SNR and PRR. With different foci, these experimental works
are complementary to our work.

Although the literature is rich, simplifying assumptions may hinder most work from
being applied directly to physically deployed sensor networks. We believe a practical
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transmission power control algorithm like ATPC is the key to apply previous theoretical
work to real-world wireless sensor networks.

6. CONCLUSIONS AND FUTURE WORK

We believe there is a serious gap between existing theory work and in situ practice.
As a solid step toward the in situ topology control in sensor networks, ATPC presents
a lightweight transmission power control technique in a pairwise manner. This fine-
granularity tuning trades off computation and local memory (e.g., needing a table in
each node) with communication, a much more costly operation in terms of energy. Our
in situ experiments reveal the correlation between RSSI/LQI and link quality. Such
observations guide us to set up a model to predict the proper transmission power,
which is enough to guarantee a good packet reception ratio. We acknowledge that this
work is by no means conclusive. However, it indicates a worthwhile direction for future
research, so that we can build sensor systems for practical deployment.

Our experiments are designed without congestion and collision. According to our
experimental results, ATPC works very well in TDMA protocols. In a low utilization
network, where collision and congestion do not happen very frequently, ATPC can
still work well. This is because feedback control is renowned for its ability to handle
stochastic disturbances.

Conflicting transmissions and interferences may impact the performance of ATPC.
However, the capture effect makes the influence of collision and interference on ATPC
less serious. Since a packet can be received even when there are overlapped radio
signals raised by simultaneous transmission, using RSSI/LQI of such a packet may
drive ATPC to an unsteady state. Whitehouse et al. [2005] address a technique to
detect packet collision. Zhou et al. [2005] create an approach to detect interferences.
By adopting such techniques, RSSI/LQI for packets identified from packet collision is
not considered as input for ATPC. Therefore, ATPC is expected to work equally well in
a CSMA network by filtering disturbances caused by collision and interference. This is
one of the major future works for ATPC.
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